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Fig.1. Schematic drawing of the wavemeter: l)2mm
waveguide, 2) helix waveguide, 3) coupling hole,
4) tuning piston, and 5) mechanical coutrter driven

by a toothed-wheel gear.

Fig.2. Photo of the wavemeter.
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Broadband Hybrids

Marcatili and Ring [1] have shown that
using two 3 dB directional couplers with a
T/2 phase shifter between them a broader
band 3 dB directional coupler can be realized.
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We have built such a device to operate in the their geometry enables us to make many at a
X-band frequency region, using two multi- time, so they are perfectly identical, a prop-
branch directional couplers described by ert y we have assumed in the theory. The dis-
Reed [2] and a dielectric phase shifter in one tance L must be one quarter wavelength for
of the interconnecting arms as shown in Fig. the central frequency (here 10.1 GHz), so
1. In our work, we have chosen Reed’s multi- L= 9.76 mm. Using Reed’s computations
branch couplers which are easy to realize; [2], we have for a fourteen branch coupler
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Fig. 1. The broadband hybrid. A r/2 dielectric phase shifter is placed in the
lower interconnecting arm between two 3 dB couplers.
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Fig. 2. Characteristics of the fourteen-slot couplers: transmitted power versus frequency.
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Fig. 3. Directivity and VSWR of the broadband hybrid.
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Fig. 4. Coupling of the whole hybrid versus frequency.

a =0.6 mm and c = 1.23 mm. The character-
istics of the fourteen-slot couplers used are
shown in Fig. 2. The couplers used have a
coupling higher than 2.6 dB over 2350 MHz
(bandwidth of 23 percent). The VSWR mea-
sured at one port when all the others are
matched is less than 1.08 between 8 and 12
GHz and the directivity is better than 30 dB.
The quadrature phase shifter is constructed
by inserting, in the waveguide (RG 52/U), a
dielectric slab tapered at both ends to mini-
mize reflections.

The dimensions of this slab have been
calculated from the theory described by Hal-
ford [3] and Altmann [4].

The whole junction we built [5] is realized
with two fourteen-slot couplers and one iT/2
phase shifter designed as above. For this whole
junction we measured the directivity, the cou-
pling, and the VSWR at one port when all
the others were matched. The results are
shown in Fig. 3 and Fig. 4. The VSWR is less
than 1.1 between 8.3 and 12 GHz. The most
interesting property remains the decoupling
between the input 1 and the output 4 when
arms 2’ and 3’ are terminated by two identical
impedances (here short circuits). This decou-
pling is higher than 40 dB for the two fre-
quencies where the coupling of each coupler
is exactly 3 dB. We have shown that a jrmc-
tion endowed with the magic tee properties
over a range wider than 3 GHz in the X band
could be obtained.
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Normal Incidence on Semi-Infinite

Longitudinally Drifting Magneto-

Plasma: The Nonrelativistic Solution

The purpose of this correspondence is to
present a nonrelativistic solution to the prob-
lem of normal incidence of electromagnetic
waves on a semi-infinite longitudinally drift-
ing homogeneous cold magnetoplasma. Re-
fleeted and transmitted waves from the drift-
ing boundary are found and the results are
identical with a relativistic solution presented
by Chawla and Unz [1].

Let a linearly polarized plane electromag-
netic wave in free space be normally incident
in the positive z direction on the drifting
boundary of a semi-infinite cold magneto-
plasma which is drifting with a constant
velocity zo= voi with a superimposed static
magnetic field ~0 = HOZ; the incident wave
will be given by
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where Ezz is a constant, w is the circular fre-
quency of the incident wave,

k?l = : = UIV’I.LOEO,

~ = ~M~ and ~0, COare the free space Perm-

eability and permittivity, and 2, j, ? being
the corresponding unit vectors.

The drifting gyrotropic plasma boundary,
assumed to be located at z= vet,will produce
in general two reflected waves in free space

& = EZ%ie~<uRt+hRaj;

~RI = — J E.R~ei(wRf+@$l (2a)
v

77Rz= EVR@~URt~@s~;

~Ra = A Eu%e~~”Rg~~Rt~ (2b)
v

where E.R, and EUE are constants, @Ris the
circular frequency of the reflected wave, and

In addition, one will have transmitted
waves in the drifting magnetoplasma of the
type d%t-%–~). From Maxwell’s equations
one obtains for the plasma waves [2]

kT
H.=–— Ey=–~E;

~@!T ~

k~
Hy=— Ez=~E= (3a)

fJo@T 7

eo(nz — l)E~ = sP~;

eo(nz — l)EV = SPV (3b)

wheres = 1—n~L, UT is the circular frequency
of the transmitted electromagnetic plasma
waves, kT is the corresponding wavenumber,
P., P. are the space polarization components,

pL =%, ckT~=—=:
c UT ‘UP‘

is the refractive index, and UP is the phase
velocity of the wave in the drifting magneto-
plasma. From the constitutive relations, one
has for the plasma waves [3]

EoXTJ!?Z= — uTpz — ‘i YPPY (4a)

●OXTEu = — UTPU + i YTPZ (4b)

where the notation by Budden [4] has been
used taking

&=%l YT=EL, .% =?,
@T2 UT ~T

uT=s–iz2. =1-nbL-iz*,

or being the plasma frequency, GJHL the
longitudinal gyromagnetic frequency, and v
the collision frequency of the plasma. Substi-
tuting (3b) into (4), one obtains

[U~(n2–1) +sX~]E.= –iYT(~2–l)E, (5a)

[uz’(n’-~)-!rSx~ ]E.= +iYT(n2-l)E.. (5b)

By equating the determinant of the homo-
geneous equations (5) to zero one may obtain
for a nontrivial solution

(n’ – 1)[1 – ?@. – izT + YT]

+ (] – n@L)xT = O (6)


