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Fig. 1. Schematic drawing of the wavemeter: 1) 2 mm
waveguide, 2) helix waveguide, 3) coupling hole,
4) tuning piston, and 5) mechanical counter driven
by a toothed-wheel gear.
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Fig. 2. Photo of the wavemeter.
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New

Broadband Hybrids

Marcatili and Ring [1] have shown that
using two 3 dB directional couplers with a
w/2 phase shifter between them a broader
band 3 dB directional coupler can be realized.
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We have built such a device to operate in the
X-band frequency region, using two multi-
branch directional couplers described by
Reed [2] and a dielectric phase shifter in one
of the interconnecting arms as shown in Fig.
1. In our work, we have chosen Reed’s multi-
branch couplers which are easy to realize;
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their geometry enables us to make many at a
time, so they are perfectly identical, a prop-
erty we have assumed in the theory. The dis-
tance L must be one quarter wavelength for
the central frequency (here 10.1 GHz), so
L=9.76 mm. Using Reed’s computations
[2], we have for a fourteen branch coupler
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Fig. 1. The broadband hybrid. A #/2 dielectric phase shifter is placed in the
lower interconnecting arm between two 3 dB couplers.
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Fig. 2. Characteristics of the fourteen-slot couplers: transmitted power versus frequency.
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Directivity and VSWR of the broadband hybrid.
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Fig. 4. Coupling of the whole hybrid versus frequency.

a=0.6 mm and ¢=1.23 mm. The character-
istics of the fourteen-slot couplers used are
shown in Fig. 2. The couplers used have a
coupling higher than 2.6 dB over 2350 MHz
(bandwidth of 23 percent). The VSWR mea-
sured at one port when all the others are
matched is less than 1.08 between 8 and 12
GHz and the directivity is better than 30 dB.
The quadrature phase shifter is constructed
by inserting, in the waveguide (RG 52/U), a
dielectric slab tapered at both ends to mini-
mize reflections.

The dimensions of this slab have been
calculated from the theory described by Hal-
ford [3] and Altmann [4].

The whole junction we built [5] is realized
with two fourteen-slot couplers and one /2
phase shifter designed as above. For this whole
Jjunction we measured the directivity, the cou-
pling, and the VSWR at one port when all
the others were matched. The results are
shown in Fig. 3 and Fig. 4. The VSWR is less
than 1.1 between 8.3 and 12 GHz. The most
interesting property remains the decoupling
between the input 1 and the output 4 when
arms 2’ and 3’ are terminated by two identical
impedances (here short circuits), This decou-
pling is higher than 40 dB for the two fre-
quencies where the coupling of each coupler
is exactly 3 dB. We have shown that a junc-
tion endowed with the magic tee properties
over a range wider than 3 GHz in the X band
could be obtained.
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Normal Incidence on Semi-Infinite
Longitudinally Drifting Magneto-
Plasma: The Nonrelativistic Solution

The purpose of this correspondence is to
present a nonrelativistic solution to the prob-
lem of normal incidence of electromagnetic
waves on a semi-infinite longitudinally drift-
ing homogeneous cold magnetoplasma. Re-
flected and transmitted waves from the drift-
ing boundary are found and the results are
identical with a relativistic solution presented
by Chawla and Unz [1].

Let a linearly polarized plane electromag-
netic wave in free space be normally incident
in the positive z direction on the drifting
boundary of a semi-infinite cold magneto-
plasma which is drifting with a constant
velocity fo=vo? with a superimposed static
magnetic field Ho=H,%; the incident wave
will be given by

Er = Exla‘éei(“’”‘k”);

H;
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where E,! is a constant, w; is the circular fre-
quency of the incident wave,

wr —
kr = 7 = wrv/ e,

7=/o/es, and o, & are the free space per-
meability and permittivity, and %, §, # being
the corresponding unit vectors.

The drifting gyrotropic plasma boundary,
assumed to be located at z=v,r, will produce
in general two reflected waves in free space

Em = ExRx‘ei(th+kRz) ;

— 1
Hri = — — B R§eit@Rtthrs) (28)
n
Em — EyRy‘ei(thH;Rz);
— 1
Hgsy = — B, Riei(RrHRd (2b)
7

where E.E, and E,® are constants, wg is the
circular frequency of the reflected wave, and

wR —
kr = P wRV Moo

In addition, one will have transmitted
waves in the drifting magnetoplasma of the
type ei@rt~*ra), From Maxwell’s equations
one obtains for the plasma waves [2]

k
Ho=-—2 g--"%g,
Howr ]
k
=" g-=-"g (3a)
MHowr 1
«(n? — 1)E, = sP,;
«(n? — DE, = sP, (3b)

where s=1-—n8z, wr is the circular frequency
of the transmitted electromagnetic plasma
waves, kr is the corresponding wavenumber,
P,, P, are the space polarization components,

v

=2, ar_c

c wrp Up
is the refractive index, and u, is the phase
velocity of the wave in the drifting magneto-
plasma. From the constitutive relations, one
has for the plasma waves [3]

«oXrl, = — UpP, — iY7P,y,
eXrly = — UrPy + 1 Y7P,

(4a)
(4b)
where the notation by Budden [4] has been
used taking

2
wp WHL v
Xp=-2, Yr=222, 7z, =2,
T [&/4 wr

UT =8—1‘ZT= 1 —nﬂL ——'iZT,
wp bping the plasma frequency, wmz the
longitudinal gyromagnetic frequency, and »

the collision frequency of the plasma. Substi-
tuting (3b) into (4), one obtains

[Ur@nt—1)+sX7|B. = —Yr(n*~1)E, (5a)
{Ur(n*—1)+sXr|By= +iYr(n*—1)E,. (5b)

By equating the determinant of the homo-
geneous equations (5) to zero one may obtain
for a nontrivial solution
@ ~ D1 —ngr — iZ F ¥r)

+ A —nB)Xr =0 (6)



